The Role of Atmosphere Feedbacks during ENSO in the CMIP3 Models. Part III: The Shortwave Flux Feedback
نویسندگان
چکیده
Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Niño–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (aSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that aSW is the primary contributor to model thermodynamical damping errors. A ‘‘feedback decomposition method,’’ developed to elucidate the aSW biases, shows that all models underestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to underestimated aSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in aSW. Changes in the aSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly calculating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.
منابع مشابه
The role of atmosphere and ocean physical processes in ENSO in a perturbed physics coupled climate model
We examine the behaviour of the El Niño – Southern Oscillation (ENSO) in an ensemble of global climate model simulations with perturbations to parameters in the atmosphere and ocean components respectively. The influence of the uncertainty in these parametrisations on ENSO are investigated systematically. The ensemble exhibits a range of different ENSO behaviour in terms of the amplitude and sp...
متن کاملAtmospheric Feedbacks over the Tropical Pacific in Observations and Atmospheric General Circulation Models: An Extended Assessment
The dynamical and radiative feedbacks from the deep convection over the tropical Pacific are quantified using ENSO signal in that region for both the observation and 16 climate models. Different from a previous analysis, we recognize the nonlinear relationship between deep convection and SST over that region, and perform the evaluation using the data from the warm phase and the cold phase separ...
متن کاملClimate Feedbacks and Their Implications for Poleward Energy Flux Changes in a Warming Climate
Feedbacks determine the efficiency with which the climate system comes back into equilibrium in response to a radiative perturbation. Although feedbacks are integrated quantities, the processes from which they arise have rich spatial structures that alter the distribution of top of atmosphere (TOA) net radiation. Here, the authors investigate the implications of the structure of climate feedbac...
متن کاملComputing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels
This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (t). These histograms were generated by the International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubledCO2 simulations from 11 global climate models in the Cloud Feedback Model Intercom...
متن کاملClimate Feedbacks in CCSM3 under Changing CO2 Forcing. Part I: Adapting the Linear Radiative Kernel Technique to Feedback Calculations for a Broad Range of Forcings
Climate feedbacks vary strongly among climate models and continue to represent a major source of uncertainty in estimates of the response of climate to anthropogenic forcings. One method to evaluate feedbacks in global climate models is the radiative kernel technique, which is well suited for model intercomparison studies because of its computational efficiency. However, the usefulness of this ...
متن کامل